Potential use of artificial intelligence in agricultural activity in semi-arid regions such as the Caatinga

Authors

DOI:

https://doi.org/10.20435/vol30iss76.4932

Keywords:

agriculture 5.0, decision making, productive efficiency, smart agriculture

Abstract

This manuscript aims to analyze the potential use of artificial intelligence in agricultural activity in the context of semi-arid regions such as the Caatinga. From the point of view of the methodological aspects, the research is classified as descriptive, since this investigation takes into account the study of the exploration of knowledge of the topic addressed. The results of the application of AI methods in agricultural activity include the early detection of pest and disease pathogens, crop scouting, monitoring of farm boundaries, analysis of irrigation structures and herd surveillance, with devices integrated into the agricultural production system. The results also show that agricultural practices have been modified with the development of intelligent technologies capable of boosting food production and sustainability initiatives.

Author Biographies

Marcelo da Costa Borba, Universidade Federal Rural da Amazônia (UFRA)

Doutor em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil.

Bibiana Melo Ramborger, Universidade Federal do Rio Grande do Sul (UFRGS)

Doutora em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil.

Murilo Campos Rocha Lima, Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano (IFSertão/Campus Ouricuri)

Doutor em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil.

Josefa Edileide Santos Ramos, Universidade Federal Rural da Amazônia (UFRA)

Doutora em Agronegócios pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil.

References

AHMAD, U.; NASIRAHMADI, A.; HENSEL, O.; MARINO, S. Technology and Data Fusion Methods to Enhance Site-Specific Crop Monitoring. Agronomy, [S. l.], v. 12, n. 3, p. 555, 2022.

ALWIS, S.; HOU, Z.; ZHANG, Y.; NA, M. H.; OFOGHI, B.; SAJJANHAR, A. A survey on smart farming data, applications and techniques. Computers in Industry, v. 138, n. 1, p. 103624, 2022.

ALZOUBI, I.; ALMALIKI, S.; MIRZAEI, F. Prediction of environmental indicators in land leveling using artificial intelligence techniques. Chemical and Biological Technologies in Agriculture, Cham, v. 6, n. 1, p. 4, 2019.

ATWELL, M. A.; WUDDIVIRA, M. N. Soil organic carbon characterization in a tropical ecosystem under different land uses using proximal soil sensing technique. Archives of Agronomy and Soil Science, [S. l.], v. 68, n. 3, p. 297-310, 2022.

BILALI, A.; TALEB, A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. Journal of the Saudi Society of Agricultural Sciences, [S. l.], v. 19, n. 7, p. 439-451, 2020.

BUGHIN, J. et al. Notes from the AI frontier: Modeling the global economic impact of AI. McKinsey Global Institute, New York, p. 1-64, 2018.

COELHO JUNIOR, L. M.; MEDEIROS, M. G.; NUNES, A. M. M.; MACIEIRA, M. L. L.; FONSECA, M. B. Avaliação do uso do solo e dos recursos florestais no semiárido do estado da Paraíba. Ciência Florestal, Santa Maria, v. 30, n. 1, p. 72, 2020.

DEFRA. The Future Farming and Environment Evidence Compendium. London: UK Government Statistical Service, 2018.

FREEMAN, C.; PEREZ, C. Structural crises of adjustment: business cycles and investment behaviour. Technical change and economic theory, London, 1989.

GRANATA, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural Water Management, Amsterdam, v. 217, p. 303–315, 2019. DOI: https://doi.org/10.1016/j.agwat.2019.03.015.

GRIEVE, B. D.; DUCKETT, T.; COLLISON, M.; BOYD, L.; WEST, J.; YIN, H.; ARVIN, F.; PEARSON, S. The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: A fundamental rethink is required. Global Food Security, New York, v. 23, p. 116-124, 2019.

LIBERATI, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj, v. 339, 2009.

PIVOTO, D.; WAQUIL, P. D.; WAQUIL, E.; WAQUIL, C. P. S.; CORTE, V. F. D.; MORES, G. V. Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, [S. l.], v. 5, n. 1, p. 21-32, 2018.

SALEHNIA, N.; SALEHNIA, N.; ANSARI, H.; KOLSOUMI, S.; BANNAYAN, M. Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and K-means approaches. International Journal of Biometeorology, London, v. 63, n. 7, p. 1-9, 2019.

SILVEIRA, F.; LERMEN, F. H.; AMARAL, F. G. An overview of agriculture 4.0 development: systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, [S. l.], v. 189, p. 106405, oct. 2021.

UNITED NATIONS. World Population Prospects 2019: Highlights. New York: United Nations 2019.

VROCHIDOU, E.; OUSTADAKIS, D.; KEFALAS, A.; PAPAKOSTAS, G. A. Computer vision in self-steering tractors. Machines, [S. l.], v. 10, n. 2, p. 129, 2022.

XIMENES, L. J. F. BNB Setorial. Fortaleza: Banco do Nordeste do Brasil, 2018.

Published

2026-02-13

How to Cite

Borba, M. da C., Ramborger, B. M., Lima, M. C. R., & Ramos, J. E. S. (2026). Potential use of artificial intelligence in agricultural activity in semi-arid regions such as the Caatinga. Multitemas, 30(76). https://doi.org/10.20435/vol30iss76.4932