Un estudio econométrico y de Machine Learning sobre personas que se empobrecieron durante la pandemia basado en la PNAD-Continua

Autores/as

DOI:

https://doi.org/10.20435/multi.v28i69.4104

Palabras clave:

pobreza, Machine Learning, Econometría

Resumen

Este estudio tiene como objetivo investigar la relación entre la pobreza y la pandemia de COVID-19, utilizando microdatos de la PNAD-Continua. Para obtener enfoques diferentes sobre el tema, se utilizaron dos metodologías: 1) Econometría y 2) Aprendizaje Automático (Machine Learning). El estudio se centra en comprender los principales determinantes de la pobreza durante el período de la pandemia, así como en predecir la vulnerabilidad de las personas a la pobreza utilizando el Aprendizaje Automático. Los resultados obtenidos señalan una mayor probabilidad de caer en la pobreza en personas no blancas, mujeres, residentes de áreas metropolitanas, personas en familias numerosas y con menor nivel educativo. Además, el algoritmo XGBoost obtuvo el mejor rendimiento en la predicción de la pobreza después del equilibrio de los datos. Estos resultados pueden ser utilizados para ayudar en la toma de decisiones en la lucha contra la pobreza en Brasil.

Biografía del autor/a

Roberto Santolin, Universidade Federal Rural do Rio de Janeiro (UFRRJ)

Doutor em Economia pelo Centro de Desenvolvimento e Planejamento Regional da Universidade Federal de Minas Gerais (CEDEPLAR/UFMG). Professor associado da Universidade Federal Rural do Rio de Janeiro (UFRRJ), campus Três Rios. Professor Permanente do Programa de Pós-Graduação em Economia Aplicada da Universidade Federal de Outro Preto (PPEA/UFOP).

Patrick Gomes de Oliveira, Universidade Federal Rural do Rio de Janeiro (UFRRJ)

Bacharel em Ciências Econômicas pela Universidade Federal Rural do Rio de Janeiro (UFRRJ), campus de Seropédica.

Citas

ATHEY, Susan; IMBENS, Guido. Machine Learning Methods That Economists Should Know About. Annual Review of Economics, [s.l.], v. 11, n. 1, p. 685–725, 2019.

CARUANA, Rich; NICULESCU-MIZIL, Alexandru. An Empirical Evaluation of Supervised Learning for ROC Area. In: INTERNATIONAL WORKSHOP, 1., Valencia, 2004. Valencia: ROCAI, 2004.

CHAKRABARTY, Navoneel; BISWAS, Sanket. A Statistical Approach to Adult Census Income Level Prediction. In: INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, 1., [s.l.], 2018. Proceedings […]. [s.l.]: IEEE, 2018.

CHEN, Li-Pang. Supervised Learning for Binary Classification on US Adult Income. Journal of Modeling and Optimization, [s.l.], v. 13, n. 2, p. 80-91, 2021.

FAYYAD, Usama; PIATETSKY-SHAPIRO, Gregory; SMYTH, Padhraic. From data mining to knowledge discovery in databases. AI Magazine, Washington, v. 17, n. 3, p. 37-54, 1996.

GONÇALVES, Solange Ledi; MACHADO, Ana Flávia. Poverty dynamics in Brazilian metropolitan areas: An analysis based on Hulme and Shepherd’s categorization (2002–2011). EconomiA, Niterói, v. 16, n. 3, p. 376-94, 2015.

LEE, Samuel; LEE, Edward. Fuzzy Sets and Neural Networks. Journal of Cybernetics, [s.l.], v. 4, n. 2, p. 83-103, 1974.

MARINHO, Emerson; MENDES, Sérgio. The impact of government income transfers on the Brazilian job market. Estudos Econômicos, São Paulo, v. 43, n. 1, p. 29-50, Jan./Mar. 2013

MASRI, Diala; FLAMINI Valentina; TOSCANI, Frederik. The Short-Term Impact of COVID-19 on Labor Markets, Poverty and Inequality in Brazil. International Moneraty Fund Working Paper [online], [s.l.], 2021.

OLIVEIRA, Gilson de; RAIHER, Augusta Pelinski. The inclusion of poor youth in the Brazilian labour market and the impact of the Bolsa Família programme. CEPAL Review, [s.l.], n. 135, 2021.

PARRAY, Irfan Ramzan; KHURANA, Surinder Singh; KUMAR, Munish; ALTALBE, Ali. Time series data analysis of stock price movement using machine learning techniques. Soft Computing, [s.l.], v. 24, p. 16509-517, 2020.

RIBEIRO, Jouse; SANTOLIN, Roberto. An evaluation of the structure of the labour market, assistance policies and sectoral productivity on the pro‐poor growth for Brazil from 2004 to 2014: a dynamic panel analysis. Journal of International Development, [s.l.], v. 33, n. 5, p. 927-44, 2021.

RIBEIRO, Lilian Lopes; MARINHO, Emerson. Time poverty in Brazil: measurement and analysis of its determinants. Estudos Econômicos, São Paulo, v. 42, n. 2, p. 285–306, 2012.

SCALON, Celi; CAETANO, André Junqueira; CHAVES, Hugo; COSTA, Luana. Back to the past: gains and losses in Brazilian society. The Journal of Chinese Sociology, [s.l.], v. 8, n. 3, 2021.

SMITH, Michael; MARTINEZ, Tony; GIRAUD-CARRIER, Christophe. An instance level analysis of data complexity. Machine learning, [s.l.], v. 95, n. 2, p. 225-56, 2014.

TOPIWALLA, Mohammed. Machine learning on UCI adult data set using various classifier algorithms and scaling up the accuracy using extreme gradient boosting. 2013. (Dissertation for Big data and Analytics) - University of SP Jain School of Global Management, Portland, 2013.

VARIAN, Hal. Big data: New tricks for econometrics. Journal of Economic Perspectives, [s.l.], v. 28, n. 2, p. 3-28, 2014.

VERDIKHA, Naufal Azmi; ADJI, Teguh Bharata; PERMANASARI, Adhistya Erna. Study of undersampling method: Instance hardness threshold with various estimators for hate speech classification. IJITEE, Yogyakarta, v. 2, n. 2, p. 39-44, 2018.

WANG, Hongchang; LI, Chunxiao; GU, Bin; MIN, Wei. Does AI-based credit scoring improve financial inclusion? Evidence from online payday lending. In: INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS, 40., 2019, Munich. Proceedings […]. ICIS: Munich, 2019.

WU, Xindong; KUMAR, Vipin; QUINLAN, Ross; GHOSH, Joydeep; YANG, Qiang; MOTODA, Hiroshi; MCLACHLAN, Geoffrey; NG, Angus; LIU, Bing; YU, Philip; ZHOU, Zhi-Hua; STEINBACH, Michael; HAND, David; STEINBERG, Dan. Top 10 algorithms in data mining. Knowledge and Information Systems, v. 14, n. 1, p. 1-37, 2007.

Publicado

2023-10-04

Cómo citar

Santolin, R., & Oliveira, P. G. de . (2023). Un estudio econométrico y de Machine Learning sobre personas que se empobrecieron durante la pandemia basado en la PNAD-Continua. Multitemas, 28(69), 233–257. https://doi.org/10.20435/multi.v28i69.4104