Nanopartículas para liberação de ativos na cicatrização de feridas diabéticas: uma revisão da literatura

Autores

DOI:

https://doi.org/10.20435/multi.v30i74.4564

Palavras-chave:

nanopartículas, liberação tópica, feridas diabéticas, úlceras diabéticas, cicatrização

Resumo

O diabetes mellitus (DM) é uma doença crônica que afeta milhões globalmente, reduzindo a qualidade de vida e causando complicações graves, como feridas diabéticas (FDs). Essas feridas, de difícil cicatrização, são suscetíveis a infecções, frequentemente levando a amputações de membros inferiores e altos custos de tratamento. As opções terapêuticas atuais para FDs são limitadas, destacando a necessidade de novas abordagens. Nanopartículas (NPs), uma inovação da Nanotecnologia, mostram potencial promissor na cicatrização de FDs. Estudos científicos indicam que NPs podem melhorar a liberação de ativos cicatrizantes, aumentar sua solubilidade e estabilidade e melhorar a penetração na pele, elevando a eficácia do tratamento e reduzindo efeitos adversos. Esta revisão bibliográfica de 28 artigos publicados nos últimos 10 anos analisou a liberação de ativos, atividade antimicrobiana, segurança e eficácia de NPs em modelos in vitro e in vivo, mostrando que NPs podem otimizar a terapia cicatrizante de FDs e reduzir complicações em pacientes diabéticos.

 

Biografia do Autor

Maria Bernadete Riemma Pierre, Universidade Federal do Rio de Janeiro (UFRJ)

Doutora e Mestre em Fármacos e Medicamentos pela Universidade de São Paulo (USP). Graduação em Farmácia Industrial pela Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo (USP). Professora associada da Universidade Federal do Rio de Janeiro (UFRJ).

Adrielle Rodrigues da Silva, Universidade Federal do Rio de Janeiro (UFRJ)

Graduação em Farmácia pela Universidade Federal do Rio de Janeiro (UFRJ). Subgerente farmacêutica responsável técnica em Drogaria.

Referências

ABDELKADER, D. H.; TAMBUWALA, M. M.; MITCHELL, C. A.; OSMAN, M. A.; EL-GIZAWY, S. A.; FAHEEM, A. M.; EL-TANANI, M.; MCCARRON, P. A. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly (vinyl alcohol)-borate hydrogels. Drug delivery and translational research, [S. l.], v. 8, n. 5, p. 1053-1065, 2018. DOI: https://doi.org/10.1007/s13346-018-0554-0

ARANTES, V. T. et al. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in vivo study. Colloids and surfaces. B, Biointerfaces, [S. l.], v. 188, n. 110749, p. 110749, 2020. DOI: https://doi.org/10.1016/j.colsurfb.2019.110749

EL-SALAMOUNI, N. S.; GOWAYED, M. A.; SEIFFEIN, N. L.; ABDEL-MONEIM, R.; KAMEL, M. A.; LABIB, G. S. Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. International journal of pharmaceutics, [S. l.], v. 592, n. 120091, p. 120091, 2021. DOI: https://doi.org/10.1016/j.ijpharm.2020.120091

EREL-AKBABA, G. AKABABA, H.; KESELIK, E.; BAHCECI, S. A.; SENYIGIT, Z.; TEMIZ, T. K. Octaarginine functionalized nanoencapsulated system: In vitro and in vivo evaluation of bFGF loaded formulation for wound healing. Journal of Drug Delivery Science and Technology, [S. l.], v. 71, 2022. DOI: https://doi.org/10.1016/j.jddst.2022.103343

FATIMA, F. et al. Design and evaluation of solid lipid nanoparticles loaded topical gels: Repurpose of fluoxetine in diabetic wound healing. Gels, Basel, v. 9, n. 1, p. 21, 2022. DOI: https://doi.org/10.3390/gels9010021

GAINZA, G.; PASTOR, M.; AGUIRRE, J. J.; VILLULLAS, S.; PEDRAZ, J. L.; HERNANDEZ, R. M.; IGARTUA, M. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. Journal of controlled release, [S. l.], v. 185, p. 51-61, 2014. DOI: https://doi.org/10.1016/j.jconrel.2014.04.032

GHASEMIYEH, P.; MOHAMMADI-SAMANI, S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Design, Development and Therapy, [S. l.], v. 14, p. 3271–3289, 2020. DOI https://doi.org/10.2147/DDDT.S264648

HAJIMIRI, M. et al. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug development and industrial pharmacy, [S. l.], v. 42, n. 5, p. 707-719, 2016. DOI: https://doi.org/10.3109/03639045.2015.1075030

HASAN, N. et al. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Materials science & engineering. C, [S. l.], v. 103, n. 109741, p. 109741, 2019. DOI: https://doi.org/10.1016/j.msec.2019.109741

JIANG, J. S. et al. Patient-driven discovery of CCN1 to rescue cutaneous wound healing in diabetes via the intracellular EIF3A/CCN1/ATG7 signaling by nanoparticle-enabled delivery. Biomaterials, [S. l.], v. 288, 2022. DOI: https://doi.org/10.1016/j.biomaterials.2022.121698

KAMAR, S. S.; ABDEL-KADER, D. H.; RASHED, L. A. (Ed.). Beneficial effect of Curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies, Annals of Anatomy. Annals of Anatomy - Anatomischer Anzeiger, [S. l.], v. 222, p. 94-102, 2019. https://doi.org/10.1016/j.aanat.2018.11.005

KAUR, P. et al. Novel nano-insulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing. Nanomedicine: nanotechnology, biology, and medicine, [S. l.], v. 15, n. 1, p. 47-57, 2019. DOI: https://doi.org/10.1016/j.nano.2018.08.013

LEE, H.-J. JEONG, M.; NA, Y.-G.; KIM, S.-J, LEE, H.-K.; CHO, C.-W. An EGF- and curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound healing in diabetic rats. Molecules, Basel, v. 25, n. 20, p. 4610, 2020. DOI: https://doi.org/10.3390/molecules25204610

LI, S. et al. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. International Journal of Biological Macromolecules, [S. l.], v. 202, 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.01.080

LOSI, P. BRIGANTI, E.; ERRICO, C.; LISELLA, A.; SANGUINETTI, E.; CHIELLINI, F.; SOLDANI, G. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta biomaterialia, [S. l.], v. 9, n. 8, p. 7814-7821, 2013. DOI: https://doi.org/10.1016/j.actbio.2013.04.019

MAATOUK, B.; JAFFA, M. A.; KARAM, M.; FAHS, D.; NOUR-ELDINE, W.; HASAN, A.; JAFFA, A. A.; MHANNA, R. Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. Colloids and surfaces. B, Biointerfaces, [S. l.], v. 208, n. 112105, p. 112105, 2021. DOI: https://doi.org/10.1016/j.colsurfb.2021.112105

MANNE, A. A.; ARIGELA, B.; GIDUTURI, A. K.; KOMARAVOLU, R. K.; MANGAMURI, U.; PODA, S. Pterocarpus marsupium Roxburgh heartwood extract/chitosan nanoparticles loaded hydrogel as an innovative wound healing agent in the diabetic rat model. Materials today. Communications, [S. l.], v. 26, n. 101916, p. 101916, 2021. DOI: https://doi.org/10.1016/j.mtcomm.2020.101916

MONTASER, A. S.; ABDEL-MOHSEN, A. M.; RAMADAN, M. A.; SLEEM, A. A.; SAHFFIE, N. M.; JANCAR, J.; HEBEISH, A. Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. International journal of biological macromolecules, [S. l.], v. 92, p. 739-747, 2016. DOI: https://doi.org/10.1016/j.ijbiomac.2016.07.050

MOTAWEA, A.; EL-GAWAD, A.; BORG, T.; MOTAWEA, M.; TARSHOBY, M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. The Foot, Edinburgh, v. 40, p. 14-21, 2019. DOI: https://doi.org/10.1016/j.foot.2019.03.007

NOR AZLAN, A. Y. H.; KATAS, H.; HABIDEEN, N. H.; BUSRA, M. F. Dual-action of thermoresponsive gels containing DsiRNA-loaded gold nanoparticles for diabetic wound therapy: Characterization, in vitro safety and healing efficacy. Saudi Pharmaceutical Journal, [S. l.], v. 28, n. 11, p. 1420-1430, 2020. DOI: https://doi.org/10.1016/j.jsps.2020.09.007

PANDA, D. S.; EID, H. M.; ELKOMY, M. H.; KHAMES, A.; HASSAN, R. M.; EL-ELA, F. I. A.; YASSIN, H. A. Berberine encapsulated lecithin–chitosan nanoparticles as innovative wound healing agent in type II diabetes. Pharmaceutics, [S. l.], v. 13, n. 8, p. 1197, 2021. DOI: https://doi.org/10.3390/pharmaceutics13081197

QAYOOM, A.; ANEESHA, V. A.; ANAGHA, S.; DAR, J. A.; KUMAR, P.; KUMAR, D. Lecithin-based deferoxamine nanoparticles accelerated cutaneous wound healing in diabetic rats. European Journal of Pharmacology, [S. l.], v. 858, n. 172478, p. 172478, 2019. DOI: https://doi.org/10.1016/j.ejphar.2019.172478

RABBANI, P. S. et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials, [S. l.], v. 132, p. 1-15, 2017. DOI: https://doi.org/10.1016/j.biomaterials.2017.04.001

SHEIR, M. M.; NASRA, M. M. A.; ABDALLAH, O. Y. Phenytoin-loaded bioactive nanoparticles for the treatment of diabetic pressure ulcers: formulation and in vitro/in vivo evaluation. Drug delivery and translational research, [S. l.], v. 12, n. 12, p. 2936-2949, 2022. DOI: https://doi.org/10.1007/s13346-022-01156-z

SOLIMAN, W. E. ELSEWEDY, H. S.; YOUNIS, N. S.; SHINU, P.; ELSAWY, L. E.; RAMADAN, H. A. Evaluating antimicrobial activity and wound healing effect of rod-shaped nanoparticles. Polymers, [S. l.], v. 14, n. 13, p. 2637, 2022. DOI: https://doi.org/10.3390/polym14132637

STAGER, M. A. et al. Photopolymerized zwitterionic hydrogels with a sustained delivery of cerium oxide nanoparticle-miR146a conjugate accelerate diabetic wound healing. ACS Applied Biomaterials, [S. l.], v. 5, n. 3, p. 1092-1103, feb. 2022. DOI: https://doi.org/10.1021/acsabm.1c01155

SUN, H. et al. Zinc alginate hydrogels with embedded RL-QN15 peptide-loaded hollow polydopamine nanoparticles for diabetic wound healing therapy. Materials & design, [S. l.], v. 222, n. 111085, p. 111085, 2022. DOI: https://doi.org/10.1016/j.matdes.2022.111085

WANG, S.; YAN, C.; ZHANG, X.; SHI, L.; LUO, G.; DENG, J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomaterials science, [S. l.], v. 6, n. 10, p. 2757-2772, 2018. DOI: https://doi.org/10.1039/C8BM00807H

YANG, Z.; CHAN, H.; YANG, P.; SHEN, X.; HU, Y.; CHENG, Y.; YAO, H.; ZHANG, Z. Nano-oxygenated hydrogels for locally and permeably hypoxia relieving to heal chronic wounds. Biomaterials, [S. l.], v. 282, n. 121401, p. 121401, 2022. DOI: https://doi.org/10.1016/j.biomaterials.2022.121401

Downloads

Publicado

2025-03-07

Como Citar

Bernadete Riemma Pierre, M., & Rodrigues da Silva, A. (2025). Nanopartículas para liberação de ativos na cicatrização de feridas diabéticas: uma revisão da literatura. Multitemas, 30(74), 149–171. https://doi.org/10.20435/multi.v30i74.4564