Influence of urban climate in the city of Campo Grande, MS, on the number of registered cases of dengue: a case study via a Poisson regression model

Authors

DOI:

https://doi.org/10.20435/inter.v24i3.3653

Keywords:

dengue fever, prediction, Poisson distribution, Poisson regression model

Abstract

In the 1980s, the first dengue fever cases were recorded in Brazil. Since then, the cases have been occurring continuously, and currently, dengue fever is one of the country's main health problems. Since the proliferation of the mosquito that transmits the disease depends on environmental variables, such as temperature and rainfall, to complete its life cycle, it is of interest to understand the relationships between climate and dengue cases. In order to contribute to the dengue surveillance system in the city of Campo Grande, MS, Brazil, this article proposes a statistical model to identify the climate variables that may be related to the number of dengue fever cases. Once the variables have been identified, the fitted model allows us to make projections and develop simulations of different sceneries. In this way, it can assist in decision-making regarding the implementation of measures to combat and/or control the transmitting mosquito. In addition, we developed a study to verify the existence of lag periods, i.e., if the number of dengue cases recorded in a month depends on the values recorded for the environmental variables in the previous month or of the current month.

Author Biographies

Erlandson Ferreira Saraiva, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil.

Pós-doutor em Estatística pelo Programa Interinstitucional de Pós-graduação em Estatística da UFSCar-USP. Doutor em Estatística pelo departamento de Estatística de Universidade Federal de São Carlos (Des-UFSCar). Mestre em Estatística pelo departamento de Estatística da Universidade Federal de São Carlos (Des-UFSCar). Graduação em Matemática Aplicada e Computacional pela Universidade Católica Dom Bosco (UCDB). Atualmente é professor adjunto do Instituto de Matemática da Universidade Federal de Mato Grosso do Sul (INMA-UFMS).

Leandro Sauer, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil.

Pós-doutor em Administração pela Faculdade de Economia, Administração, Contabilidade e Atuária da Universidade de São Paulo (FEA-USP). Doutor em Engenharia Elétrica pela Universidade Estadual de Campinas (UNICAMP).  Mestre em Engenharia Elétrica pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio). Aperfeiçoamento em Estatística Matemática pelo Instituto de Matemática Pura e Aplicada (IMPA), RJ. Graduação em Matemática pela Universidade Federal de Mato Grosso do Sul (UFMS). Atualmente, é professor titular da Escola de Administração e Negócios (ESAN) e professor do Programa de Pós-Graduação em Administração da UFMS, e professor do Programa de Mestrado Profissionalizante em Rede Nacional (PROFIAP).

Mariana Villela Flesh, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil.

Graduada em Matemática pelo Instituto de Matemática da Universidade Federal de Mato Grosso do Sul (INMA-UFMS).

References

AKAIKE, H. A. New look at the statistical model identification. IEEE Transactions on Automatic Control., London, UK, v. 19, n. 264, p. 716-23, 1974.

AZIL, A. H.; LONG. S. A.; RITCHIE, S. A.; WILLIAMS, C. R. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Tropical Medicine International Health, London, v. 15, n. 10, p. 1190-7, 2010.

BIBLIOTECA VIRTUAL EM SAÚDE DO MINISTÉRIO DA SAÚDE. Dengue. Portal BVSMS, Brasília, DF, 2007. Disponível em: https://bvsms.saude.gov.br/dengue-16. Acesso em: 9 set. 2021.

BOZDOGAN, H. Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psycometrica, New York, US, v. 52, p. 345-370, 1987.

CAMERON, A. C.; TRIVEDI, P. K. Regression Analysis of Count Data. 2. ed. New York: Cambridge Press, 1998.

CASELLA, G.; BERGER, R. L. Statistical inference. New York, US: Duxbury Pacific Grove, CA, 2002. V. 2.

COSTA, M. A. R. A Ocorrência do Aedes aegypti na Região Noroeste do Paraná: um estudo sobre a epidemia da dengue em Paranavaí - 1999, na perspectiva da Geografia Médica. 2001. 214 f. Dissertação (Mestrado em Institucional em Geografia) – Faculdade Estadual de Educação Ciências e Letras de Paranavaí, Universidade Estadual Paulista, Presidente Prudente, 2001.

CRAN R. R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2021. Disponível em: http://R-project.org. Acesso em: 20 de Setembro de 2021.

DONALISIO, M. R.; GLASSER, C. M. Vigilância entomológica e controle de vetores do dengue. Revista Brasileira de Epidemiologia, São Paulo, v. 5 n. 3, p. 259-72, dez. 2002.

GUBLER, D. J. Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews, Colorado, v. 11, n. 3, p. 480-96, 1998.

GUBLER D. J. (2002). The global emergence/resurgence of arboviral diseases as public health problems. Archives of medical research, London, v. 33, n. 4, p. 330-42, 2002.

MCCULLAGH, P.; NELDER J. A. Generalized linear models. New York: Chapman / Hall, 1989.

SCHWARZ, G. E. Estimating the dimension of a model. Annals of Statistics, New York, n. 6, p. 461-64, 1978.

SILVA, J. S., MARIANO, Z. F., SCOPEL, I. A influência do clima urbano na proliferação do mosquito Aedes aegypti em Jataí (GO) na perspectiva da geografia médica. Hyheia, Uberlândia, v. 2, n. 5, p. 33-49, dez. 2017.

WALD, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, New York, v. 54, n. 3, p. 426-82, 1943.

WAN, W. Y. F.; WAN, W. H. A.; ALIAS, L. M.; WAH, Y. B. Modelling Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF) Outbreak Using Poisson and Negative Binomial Model International Journal of Medical. Medicine and Health Sciences, London, v. 3, n. 2, p. 1-6, 2010.

Published

2023-10-20

How to Cite

Saraiva, E. F. ., Sauer, L., & Flesh, M. V. (2023). Influence of urban climate in the city of Campo Grande, MS, on the number of registered cases of dengue: a case study via a Poisson regression model. Interações (Campo Grande), 24(3), 959–974. https://doi.org/10.20435/inter.v24i3.3653