Comportamento pró-ambiental e seus determinantes: evidências para Mato Grosso do Sul

Autores

DOI:

https://doi.org/10.20435/inter.v25i4.4590

Palavras-chave:

ANN, razão de dígitos, comportamento pró-ambiental, comportamento de consumo

Resumo

Este artigo investiga a importância das características individuais, incluindo uma proxy para os níveis de testosterona (usando a relação do marcador biológico 2D:4D como proxy), para explicar o comportamento pró-ambiental dos alunos. Empregamos modelagem de aprendizado de máquina a partir de redes neurais artificiais. Elaboramos uma pontuação ambiental baseada em 13 questões relacionadas ao impacto ambiental gerado pelos indivíduos. Analisamos quais variáveis ​​de perfil são mais importantes para explicar o comportamento pró-ambiental. Os resultados estão de acordo com a literatura, que comprova a importância da relação 2D:4D como preditor de comportamento pró-ambiental (níveis de testosterona), sexo e idade. Esses resultados sugerem evidências para a elaboração de políticas públicas de preservação e redução da degradação ambiental com base nas características dos indivíduos e nos marcadores biológicos.

Biografia do Autor

Michel Constantino, Universidade Católica Dom Bosco (UCDB

PhD in Economics in Catholic University of Brasilia. Professor and researcher in the area of ​​Economics and Statistics of the Postgraduate Program in Local Development at the Dom Bosco Catholic University (UCDB).

Benjamin Miranda Tabak, School of Public Policy and Government of Getulio Vargas Foundation (FGV/EPPG),

PhD in Economics in University of Brasilia. CNPq Researcher 1A. Professor and Coordinator of the Master Program in Public Policy and Government of Getulio Vargas Foundation (FGV/EPPG), and the Phd Program in Economics (FGV/EPPG), Brasília. The author thanks the CNPq and Capes Foundation for financial support.

Ricardo Alexandre Martins Garcia, Universidade Católica Dom Bosco (UCDB

PhD in Environmental Sciences in Dom Bosco Catholic University. Professor of the Administration course at the Dom Bosco Catholic University (UCDB).

Referências

BERGQUIST, M.; NILSSON, A.; SCHULTZ, W. P. A meta-analysis of fieldexperiments using social norms to promote pro-environmental behaviors. Global Environmental Change, [s.l.], v. 59, 101941, 2019. Doi: https://doi.org/10.1016/j.gloenvcha.2019.101941

CONSTANTINO, M.; GARCIA, R.; MENDES, D.; SANTOS, F.; SILVA, E. Economia comportamental: delineamento de um experimento com o marcador biológico 2D: 4D. Revista Psicologia e Saúde, [s.l.], v. 10, n.1, p. 31–45, 2018. Doi: https://www.redalyc.org/journal/6098/609863939003/609863939003.pdf

DA SILVA, E. B.; SILVA, T. C.; CONSTANTINO, M.; AMANCIO, D. R.; TABAK, B. M. Overconfidence and the 2D:4D ratio. Journal of Behavioral and Experimental Finance, [s.l.], v. 25, n. 100278, 2020. Doi: https://doi.org/10.1016/j.jbef.2020.100278

DAVIDSON, D. J.; FREUDENBURG, W. R. Gender and environmental risk concerns: a review and analysis of available research. Environment and Behavior, [s.l.], v. 28, n. 3, 302–39, 1996. Doi: https://doi.org/10.1177/00139165962830

DAVIS, D.; HOLT, C. Experimental economics: methods, problems and promise. Estudios Económicos, Mexico, v. 8, n. 2, p. 179–212, 1993a. Doi: https://www.jstor.org/stable/40311331

DAVIS, D. D.; HOLT, C. A. Experimental economics. Princeton: Princeton University Press, 1993b.

FIALA, N. Measuring sustainability: why the ecological footprint is bad economics and bad environmental science. Ecological Economics, [s.l.], v. 67, n. 4, p. 519–25, 2008. Doi: https://doi.org/10.1016/j.ecolecon.2008.07.023

FRIEDL, A.; NEYSE, L.; SCHMIDT, U. Payment scheme changes and effort adjustment: the role of 2D:4D digit ratio. Journal of Behavioral and Experimental Economics, [s.l.], v. 72, p. 86–94, 2018. Doi: https://doi.org/10.1016/j.socec.2017.11.007

FURTADO, R. N. Do comportamento à cognição: transformações epistêmicas no pensamento behaviorista do século XX. Revista Contemplação, [s.l.], n. 17, [s.p.], 2018. Doi: https://revista.fajopa.com/index.php/contemplacao/article/view/179

GARSON, G. D. Interpreting neural-network connection weights. AI Expert, [s.l.], v. 6, n. 1, p. 46–51, 1991.

GROU, B.; TABAK, B. M. Ambiguity aversion and illusion of control: experimental evidence in an emerging market. Journal of Behavioral Finance, [s.l.], v. 9, n. 1, p. 22–9, 2008. Doi: https://doi.org/10.1080/15427560801897162

HAND, C. Biology and being green: the effect of prenatal testosterone exposure on pro-environmental consumption behaviour. Journal of Business Research, [s.l.], v. 120, n. 1, p. 619–26, 2020. Doi: https://doi.org/10.1016/j.jbusres.2019.02.034

HUNTER, L. M.; HATCH, A.; JOHNSON, A. Cross-national gender variation in environmental behaviors. Social Science Quarterly, [s.l.], v. 85, n. 3, p. 677–94, 2004. Doi: https://doi.org/10.1111/j.0038-4941.2004.00239.x

HÁK, T.; JANOUŠKOVÁ, S.; MOLDAN, B.; DAHL, A. Closing the sustainability gap: 30 years after “our common future”, society lacks meaningful stories and relevant indicators to make the right decisions and build public support. Ecological Indicators, [s.l.], v. 87, p. 193–5, 2018. Doi: https://doi.org/10.1016/j.ecolind.2017.12.017

JÓHANNESSON, S.; DAVIDHSDOTTIR, B.; HEINONEN, J. Standard ecological footprint method for small, highly specialized economies. Ecological Economics, [s.l.], v. 146, p. 370–80, 2018. Doi: https://doi.org/10.1016/j.ecolecon.2017.11.034

KOLLMUSS, A.; AGYEMAN, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environmental Education Research, [s.l.], v. 8, n. 3, p. 239–60, 2002. Doi: https://doi.org/10.1080/13504620220145401

LINNERUD, K.; TONEY, P.; SIMONSEN, M., HOLDEN, E. Does change in ownership affect community attitudes toward renewable energy projects? Evidence of a status quo bias. Energy Policy, [s.l.], v. 131, p. 1–8, 2019. Doi: https://doi.org/10.1016/j.enpol.2019.04.039

MACHADO, L. C. C. Towards interpretable unbiased behavioral pattern recognition. Resolving the role of prenatal sex steroids in the development of digit ratio. Proceedings of the National Academy of Sciences, Porto, v. 1, n. 108, p. 16143–98, 2018.

MANNING, J. T.; SCUTT, D.; WILSON, J.; LEWIS-JONES, D. I. The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Human Reproduction, Oxford, England, v. 13, n. 11, p. 3000–4, 1998. Doi: https://doi.org/10.1093/humrep/13.11.3000

OLDEN, J. D.; JOY, M. K.; DEATH, R. G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, [s.l.], v. 178, n. 3/4, p. 389–397, 2004. Doi: https://doi.org/10.1016/j.ecolmodel.2004.03.013

RINELLA, S.; BUSCEMI, A.; MASSIMINO, S.; PERCIAVALLE, V.; TORTORICI, M. M.; TOMASELLI, D. G.; PERCIAVALLE, V.; DI CORRADO, D.; COCO, M. Risktaking behavior, the second-to-fourth digit ratio and psychological features in a sample of cavers. PeerJ, [s.l.], v. 7, n. e8029, 2019. Doi: https://peerj.com/articles/8029/

SCARPA, F; SOARES, A. P. Pegada ecológica: qual é a sua. Instituto Nacional de Pesquisas Espaciais [INPE], São José dos Campos, SP, v. 1, n. 1, p. 16–250, 2012.

STERNBERG, R. J. Wics: a new model for cognitive education. Journal of Cognitive Education and Psychology, [s.l.], v. 9, n. 1, p. 36–47, 2010.

TABAK, B. M.; FAZIO, D. M. Ambiguity aversion and illusion of control in an emerging market: are individuals subject to behavioral biases? Cheltenham, UK: Edward Elgar Publishing, 2010. Doi: https://doi.org/10.4337/9781849809108.00030

TODOROV, J. C. Sobre uma definição de comportamento. Perspectivas em análise do comportamento, [s.l.], v. 3, n. 1, 32–37, 2012. Doi: https://doi.org/10.18761/perspectivas.v3i1.79

TVERSKY, A., KAHNEMAN, D. Loss aversion in riskless choice: a reference dependent model. The Quarterly Journal of Economics, [s.l.], v. 106, n. 4, p. 1039–61, 1991. Doi: https://doi.org/10.2307/2937956

VAN BELLEN, H. M. Indicadores de sustentabilidade: um levantamento dos principais sistemas de avaliação. Cadernos eBAPe. Br, [s.l.], v. 2, n. 1, p. 1–14, 2004. Doi: https://doi.org/10.1590/S1679-39512004000100002

VENABLES, W. N.; RIPLEY, B. D. Modern Applied Statistics with S. 4. ed. New York: Springer, 2002. ISBN 0-387-95457-0

WORLD COMMISSION ON ENVIRONMENT AND DEVELOPMENT [WCED]. Our common future. Environmental conservation, [s.l.], v. 14, n. 4, p. 291–4, 1987.

WU, T.; SHANG, Z.; TIAN, X.; WANG, S. How hyperbolic discounting preference affects chinese consumers’ consumption choice between conventional and electric vehicles. Energy Policy, [s.l.], v. 97, p. 400–13, 2016. Doi: https://doi.org/10.1016/j.enpol.2016.07.004

XIAO, C.; HONG, D. Gender differences in environmental behaviors among the chinese public: model of mediation and moderation. Environment and Behavior, [s.l.], v. 50, n. 9, p. 975–96, 2018. Doi: https://doi.org/10.1177/0013916517723126

YUSLIZA, M. Y.; AMIRUDIN, A.; RAHADI, R. A.; NIK SARAH ATHIRAH, N. A.; RAMAYAH, T.; MUHAMMAD, Z.; DAL MAS, F.; MASSARO, M.; SAPUTRA, J.; MOKHLIS, S. An investigation of pro-environmental behaviour and sustainable development in Malaysia. Sustainability, [s.l.], v. 12, n. 17, p. 70–83, 2020. https://doi.org/10.3390/su12177083

ZHANG, Z.; BECK, M.W.; WINKLER, D. A.; HUANG, B.; SIBANDA, W.; GOYAL, H.; Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Annals of Translational Medicine, [s.l.], v. 6, n. 11, [s.p.], 2018. Doi: https://doi.org/10.21037/atm.2018.05.32

Downloads

Publicado

2024-12-10

Como Citar

Constantino, M., Tabak, B. M., & Garcia, R. A. M. (2024). Comportamento pró-ambiental e seus determinantes: evidências para Mato Grosso do Sul. Interações (Campo Grande), 25(4), e2544590. https://doi.org/10.20435/inter.v25i4.4590